

Antimobial Stewardship in the Pediatric Setting

Laila Alawdah, MBBS MPH
Consultant, Pediatric Infectious Diseases
and Antimicrobial Stewardship
Children's Specialized Hospital
King Fahad Medical City
Riyadh, Kingdom of Saudi Arabia
lalawdah@kfmc.med.sa

Disclosures

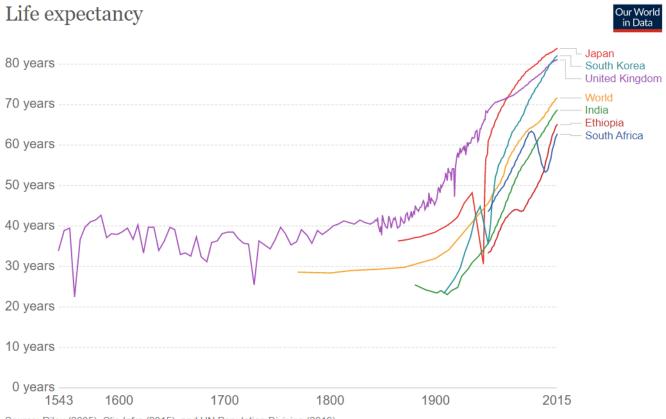
None

Abbreviations

AMS = Antimicrobial Stewardship

AMR = Antimicrobial Resistance

ABx = Antibiotics


PPx = Prophylaxis

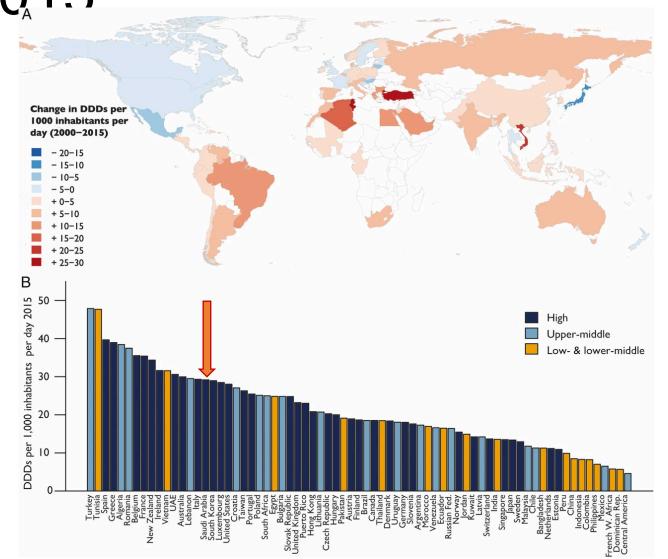
Session Outline

- Historical view on antibiotics and AMR
- Antibiotic utilization in children
 - Community setting
 - Hospital setting
- AMS strategies in pediatrics
 - Community setting
 - Hospital setting
- AMS metrics in pediatrics what to measure?

Major Victories in Public Health

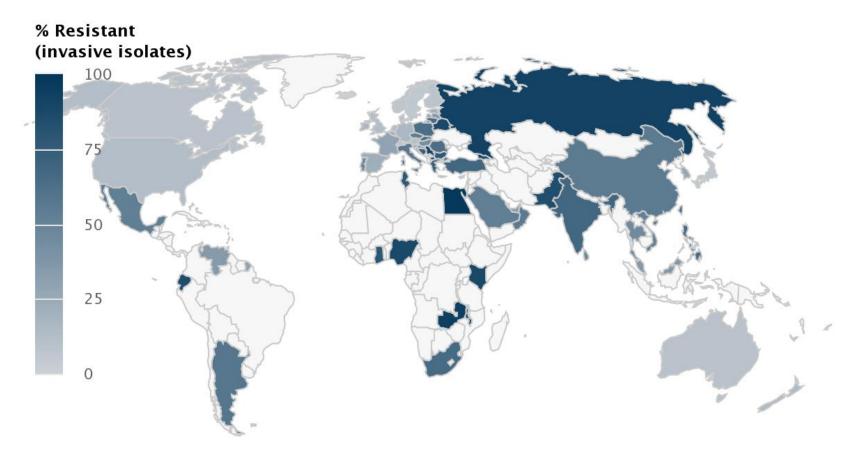
- Clean water
- Sanitation
- Antibiotics
- Vaccinations

Source: Riley (2005), Clio Infra (2015), and UN Population Division (2019)


Note: Shown is period life expectancy at birth, the average number of years a newborn would live if the pattern of mortality in the given year were to stay the same throughout its life.

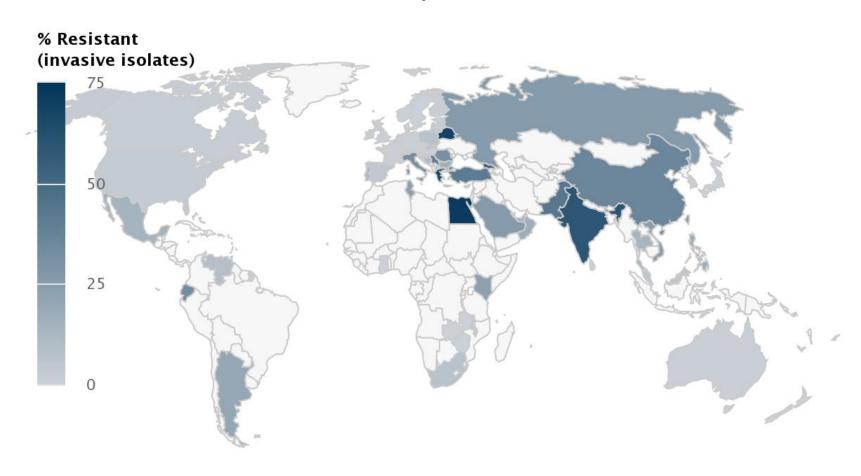
OurWorldInData.org/life-expectancy • CC BY

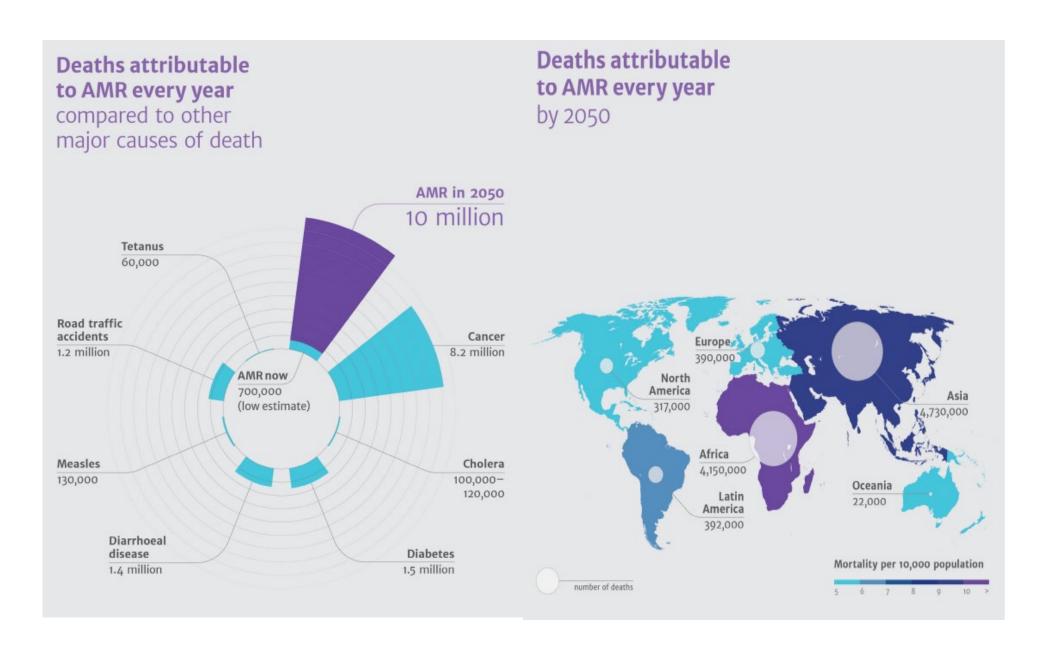
Modern Medicine Era


- Intensive care
- Safe surgeries
- Cancer care
- Neonatal care
- Organ Transplantation

Global antibiotic consumption by country: 2000–2015

AMR - Where do we stand?


Resistance of *Klebsiella pneumoniae* to Cephalosporins (3rd gen)


Center for Disease Dynamics, Economics & Policy (cddep.org) © Natural Earth

AMR - Where do we stand?

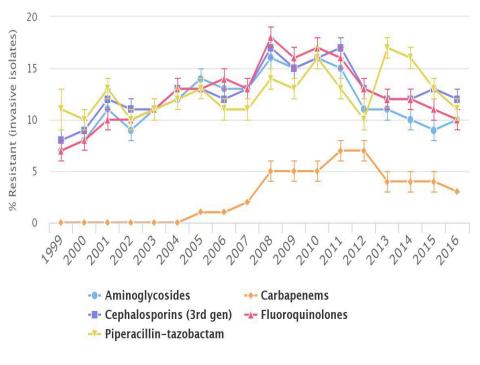
Resistance of *Klebsiella pneumoniae* to Carbapenems

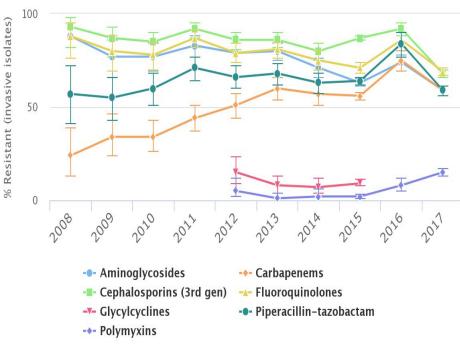
Center for Disease Dynamics, Economics & Policy (cddep.org) © Natural Earth

Fighting Back Against Antibiotic Resistance

1. Preventing infections, preventing the spread of resistance

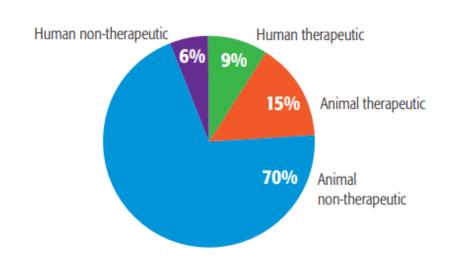
2. Tracking

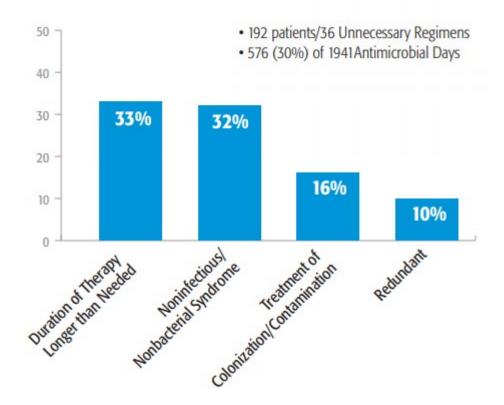

3. Improving antibiotic prescribing/Stewardship


4. Developing new drugs and diagnostic tests

A Global Issue = A Global Action

Antibiotic Resistance of *Klebsiella* pneumoniae in United States




Antibiotic Resistance of *Klebsiella* pneumoniae in India

Center for Disease Dynamics, Economics & Policy (cddep.org)

Antibiotic Misuse

Antibiotic Prescribing in Children

- Who is prescribing?
 - 74% general practices (community-based setting)
 - 11% hospital inpatient
 - 7% hospital outpatient
 - 5% dental practices
 - 3% other community setting

Antibiotic Prescribing in Children

Top 10 Indications in Children (9	Top 10 Indications in Neonates (%)		
Bacterial lower respiratory tract infection	18.7	Sepsis	36.4
Prophylaxis for medical problems	15.1	Prophylaxis for maternal risk factor	12.2
Prophylaxis for surgical disease	9.9	Prophylaxis for newborn risk factor	11.3
Sepsis	9.0	Lower respiratory tract infection	8.7
Treatment for surgical disease	6.1	Prophylaxis for surgical disease	5.4
Urinary tract infection	5.6	Prophylaxis for medical problems	5.1
Febrile neutropenia in oncologic patient	4.8	Catheter-related blood stream infection	3.4
Upper respiratory tract infection	4.6	CNS infection	3.2
Skin/soft tissue infection	4.4	Treatment for surgical disease	2.6
Viral lower respiratory tract infection	3.7	Skin/soft tissue infections	2.6

Abx Prescription in Community Setting in Children Under 5 Years of Age

Table 1. GP diagnosis and association with antibiotic prescription	Table 1.	GP	diagnosis an	d association	with antibioti	c prescrip	tion
--	----------	----	--------------	---------------	----------------	------------	------

GP working diagnosis	Children with diagnosis, n (%)	Proportion prescribed oral antibiotics (%)	Proportion of antibiotic prescriptions, %
Tonsillitis/sore throat	58 (5.8)	54/58 (93.1)	20.7
Ear infection	51 (5.1)	42/51 (82.4)	16.1
LRTI	90 (9.0)	63/90 (70.0)	24.1
UTI	54 (5.4)	26/54 (48.1)	10.0
URTI	297 (29.7)	43/297 (14.5)	16.5
Other	167 (16.7)	18/167 (10.8)	6.9
No diagnosis given	68 (6.8)	5/68 (7.4)	1.9
Viral illness	145 (14.5)	9/145 (6.2)	3.4
Gastroenteritis	42 (4.2)	1/42 (2.4)	0.4
Conjunctivitis	27 (2.7)	0/27 (0)	0
Total	999	261 (26.1)	100

LRTI = lower respiratory tract infection. URTI = upper respiratory tract infection. UTI = urinary tract infection.

Abx Use in Children in Hospital Setting

- Retrospective cohort at 40 Children Hospitals in the US in 2008
 - 60% of all admitted children received at least one antibiotic during their hospitalization
- Cross Sectional PPS at 226 pediatric hospitals in 41 countries in 2012 included 17,693 pediatric patients
 - 37% received antibiotics
 - 33% received at least 1 antimicrobial for prophylaxis use
 - 80-87% of all surgical ppx continue > 1 day

Abx Use in Children in Hospital Setting

- Retrospective cohort in pediatric/neonatal intensive care units in 6 major medical centers in the US (2008-2013)
 - 73% of labeled pediatric ventilator-associated condition who received > 4 days of antibiotics had no associated positive respiratory or non-respiratory diagnostic test
 - The mean duration of new antimicrobial use is 8.8 days ± 11.5 days in PICUs

Abx Use in Saudi Arabia

Cross sectional point prevalence survey of all inpatients in 26 MOH hospitals – 2016

- 47% were receiving antibiotics
- 23.4% administered for surgical ppx (78% > 24 hours)
- Adherence to antibiotic guidelines was 48%
- Indication of antibiotic was not documented in 51% of prescriptions

What Drives the Extensive Use of Antibiotics in Children

- Infections have been and remain the most common cause of death in children under 5 globally
- Abx are cheap
- Abx generally are well tolerated

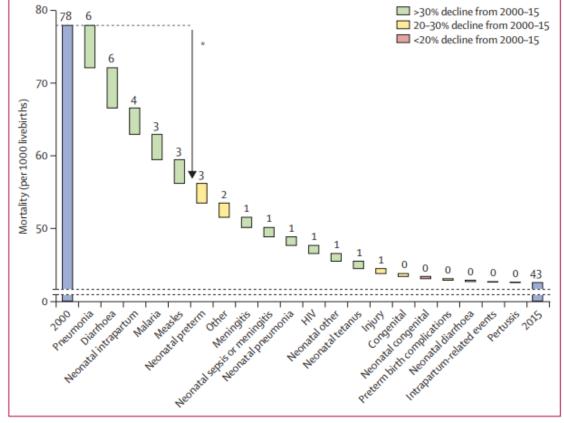
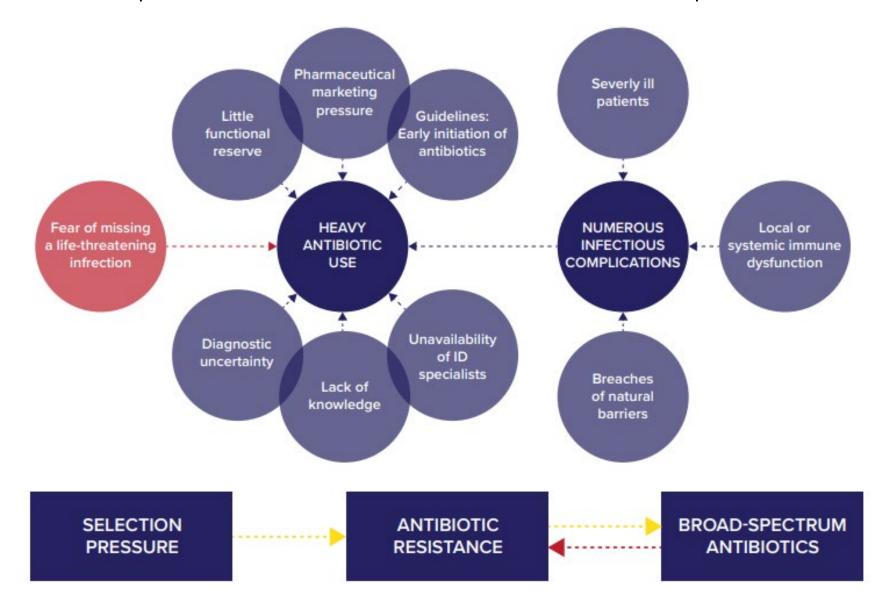
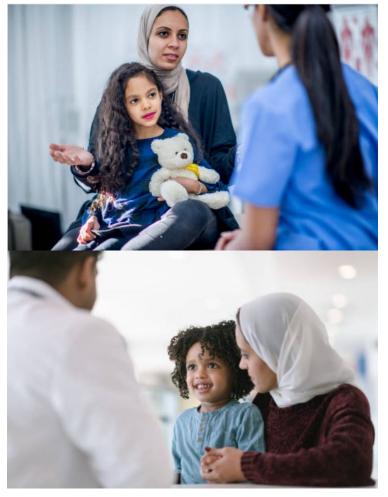



Figure 2: Global trends in cause-specific mortality rates in neonates and children aged 1–59 months, 2000–15 *About 61% of the reduction comes from pneumonia, diarrhoea, malaria, and measles among 1–59-month olds and neonatal intrapartum related events.


Liu et al. Lancet 2016; 388: 3027–35 Patel & Vergnano. Curr Opin Infect Dis 2018, 31:216–223

The Complicated Decisions Around Antibiotic Prescription

Factors Influencing Antibiotic-Prescribing Decisions

- Factors influencing parent health-seeking behavior for children with RTI
 - To eliminate the risk of a potential health threat
 - Experience during previous illnesses (previously Abx prescription or test)
 - Cannot afford to visit the doctor again
 - Low tolerance to fever

Cabral et al. Social Science & Medicine 136-137 (2015) 156-164 Horwood et al. Br J Gen Pract 2016;66(644):e207-13. Patel & Vergnano. Curr Opin Infect Dis 2018, 31:216–223

Factors Influencing Clinician Antibiotic-Prescribing Decisions

- Factors influencing clinician's antibiotic prescribing decision for children with RTI
 - Perceived vulnerability of children (a bit more careful with children as they change quickly and cant tell you..)
 - Clinical assessment and diagnostic process (how the child appears at the moment or if there is any abnormal clinical sign in ear/throat/chest)

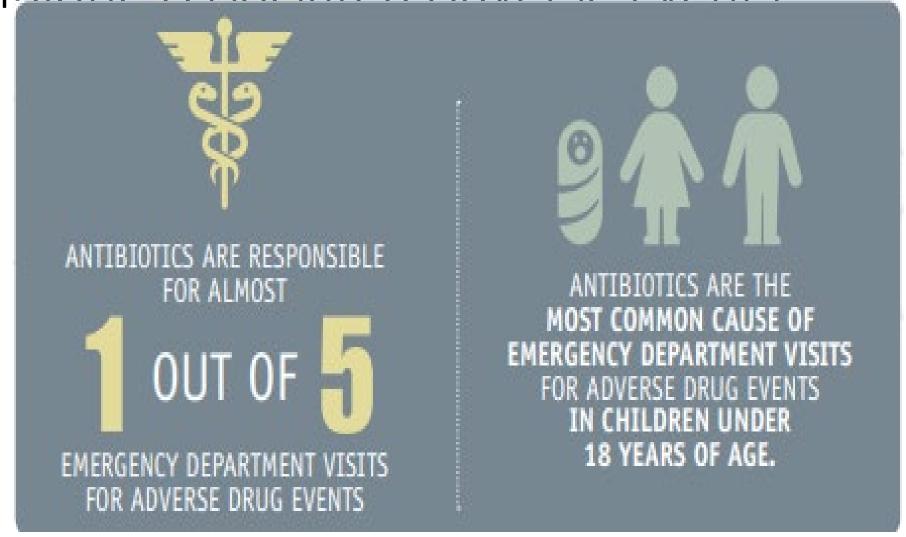
Factors influencing clinician antibioticprescribing decisions

- Factors influencing clinician's antibiotic prescribing decision for children with RTI
 - Uncertainty in diagnosis, prognosis (one can't tell if viral vs. bacterial can't risk leaving a developing serious RTI)
 - Repercussions of "missing something" in a child (fear of litigation or risk to professional status)
 - Nonclinical influences (multiple consultations during the same illness)

Why Does it Matter? Abx Use Consequences in Children

 Patients <21 years of age in four free standing children hospitals in the US:

Exposure to **ANY** antibiotic (**regardless of the spectrum and duration**)


RR of having an extended-spectrum-beta-lactamase-producing (ESBL) *Escherichia coli* or *Klebsiella pneumoniae* isolate within 30 days was 2.2 times higher than those without Abx exposure

Why Does it Matter? Abx Use Consequences in Children

- Children infected with CRE in 3 major free-standing children hospitals in US:
 - More often hospitalized in the ICU (61% vs. 40% in CSE)
 - More often had health-care associated infections (71% vs 38% in CSE)
 - Higher 30-day mortality = 8.3% in CRE patients (infection-related mortality was 6.5% in CRE and 0% in CSE)

Apart from AMR - Why Does It Matter?

Antihiotic-Associated Adverse Events

Apart from AMR - Why Does It Matter? Antibiotic-Associated Adverse Events

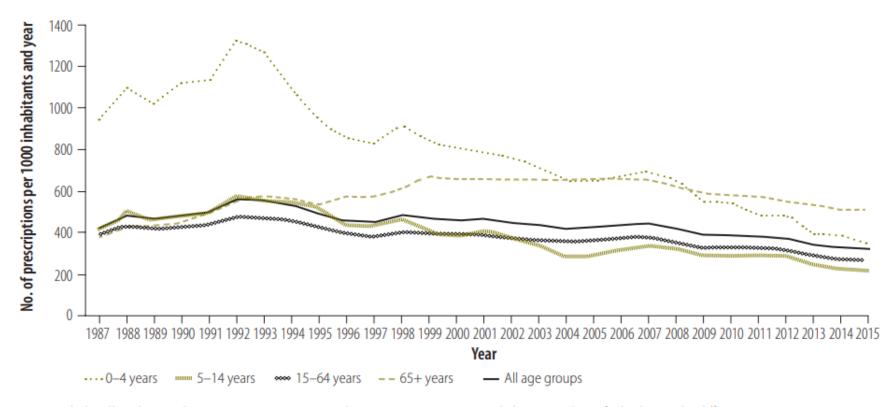
- During a one-year period in a major medical center in the US 375 children visited the emergency department or urgent care clinic for antibiotic adverse drug reactions (2013-2014)
 - Total cost for these visits was \$170,893.20
 - Of these ADRs, 17% were likely avoidable
- Clostridioides difficile infection (Hospital-Onset)
 - Increased risk of mortality OR 6.73 (3.77-12.02)
 - Increased length of stay-5.5 days (4.5-6.5 days)
 - Increased hospital costs-\$93K (80-107,200)

A Word about AMS in Neonatal Units

- Age-specific considerations:
 - Have greater susceptibility to infections compared with any other age group
 - Microbiologically proven infections are difficult to prove (volume challenge)
- Overuse of antimicrobials is associated with a number of factors unique to this population
 - Increased risk of necrotizing enterocolitis
 - Increased risk of candidemia
 - Long-term sequalae such as asthma, obesity and inflammatory bowel disease
 - Prolonged antimicrobial courses drive multi resistant Gram-negative colonization
 - Infections with multi resistant Gram-negative bacteria are associated with adverse neurodevelopmental outcomes, increased length of stay and mortality

AMS Strategies in Pediatrics

- Community setting
- Hospital setting


Pediatric AMS in Community-Based Settings

- Issue with access to care
- Issue with access to antibiotics

- Some employed strategies to decrease inappropriate antibiotic prescribing:
 - Nation-wide approach
 – variable results
 - Sweden vs. UK
 - Antibiotic shared decision approach
 - Immediate vs. delayed prescription

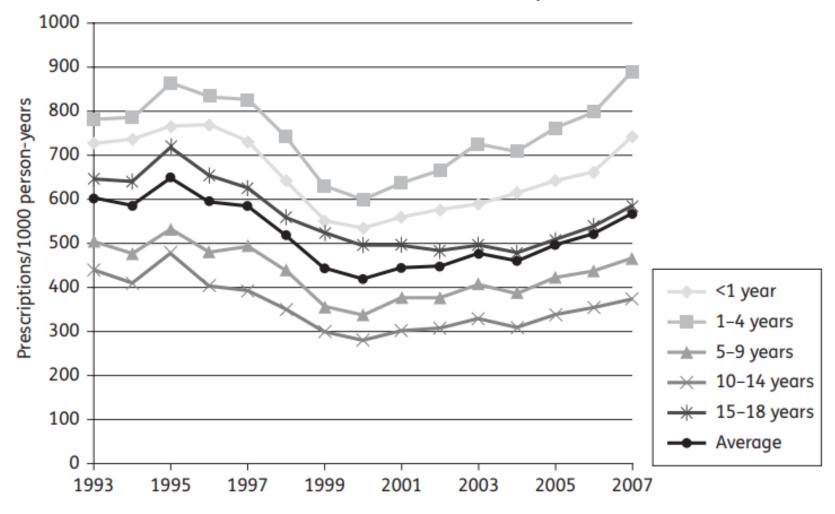
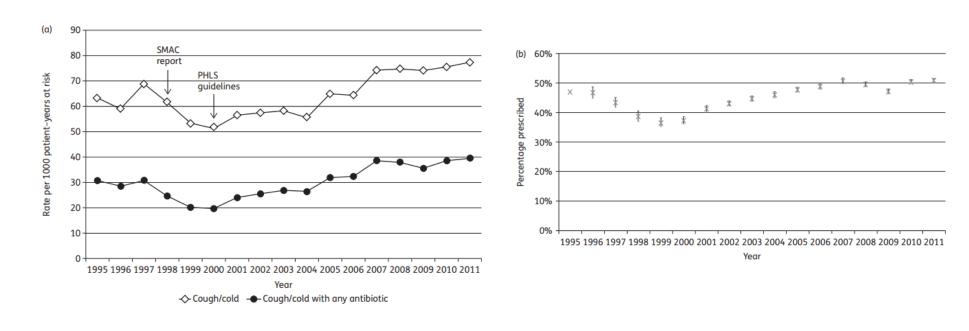

Pediatric AMS in Community-Based Settings

Fig. 1. Sales of antibiotics for systemic use in outpatient care, Sweden, 1987–2015



Notes: Includes all antibiotic sales on prescriptions, presented as prescriptions per 1000 inhabitants and year for both sexes by different age groups. Source: Public Health Agency of Sweden, 2016.⁹

Pediatric AMS in Community-Based Settings

Trends in Antibiotic Prescribing in Primary Care – UK 1995-2011

(a) Incidence of selected cough/cold diagnoses and of episodes with antibiotic prescribed, 1995–2011. (b) Percentage of cough/cold episodes prescribed an antibiotic, 1995–2011 (with 95% CIs for within-practice year-on-year variation).

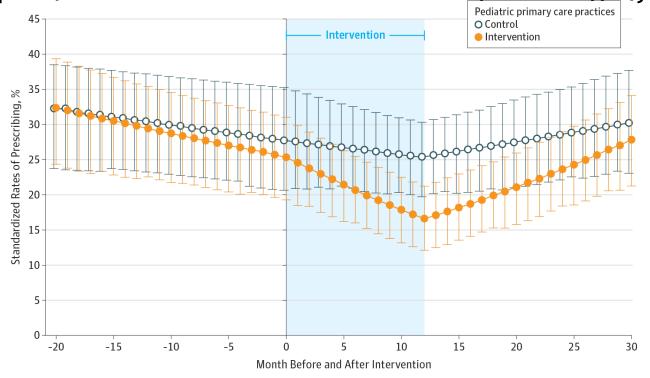
Strategies for Reducing Antibiotic Prescribing in Community Settings

- Shared decision-making during office visits
 - Telling parents that antibiotics are not effective against viruses did not have an impact on parents' beliefs about the need to consult or their expectations concerning antibiotics
 - Parents believed that antibiotics were needed to treat more severe illnesses
 - Antibiotic prescriptions tended to confirm parents' beliefs about what indicated illness severity, which often took into account the wider impact on a child's life
 - Most parents poorly understand the risk of antimicrobial resistance

Strategies for Reducing Antibiotic Prescribing in Community Settings

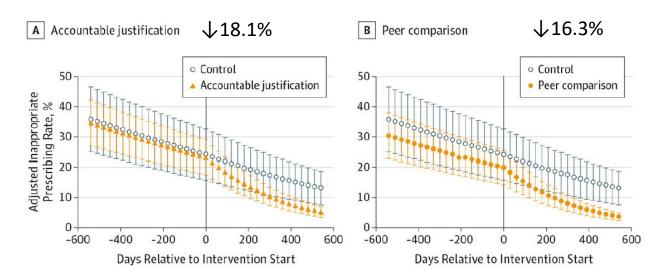
- Shared decision-making during office visits
 - Reduce antibiotic use for ARIs in primary care (immediately after or within six weeks of the consultation), compared with usual care, from 47% to 29%
 - Reduction in antibiotic prescribing occurred without an increase in patient-initiated reconsultations or a decrease in patient satisfaction with the consultation

Figure 4. Forest plot of comparison: I Shared decision making versus usual care (control), outcome: I.I Antibiotics prescribed, dispensed or decision to use (short-term, index consultation to \leq 6 weeks).


		SI	nared decision making	Usual care		Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Francis 2009 (1)	-0.7867	0.4212	256	272	1.8%	0.46 [0.20, 1.04]	
Briel 2006 (2)	-0.1518	0.2619	259	293	4.8%	0.86 [0.51, 1.44]	-
Légaré 2012 (3)	-0.6931	0.2606	181	178	4.8%	0.50 [0.30, 0.83]	<u>→</u>
Légaré 2011 (4)	-0.3738	0.204	81	70	7.9%	0.69 [0.46, 1.03]	
Cals 2009 (5)	-0.6846	0.19	201	230	9.1%	0.50 [0.35, 0.73]	-
Altiner 2007 (6)	-0.6983	0.1666	1021	1143	11.8%	0.50 [0.36, 0.69]	+
Little 2013 (7)	-0.3711	0.1251	2332	1932	20.9%	0.69 [0.54, 0.88]	•
Welschen 2004 (8)	-0.4806	0.0917	905	818	38.9%	0.62 [0.52, 0.74]	•
Total (95% CI)			5236	4936	100.0%	0.61 [0.55, 0.68]	•
Heterogeneity: Tau ² =	0.00; Chi ² = 6.62	df = 7 (P =	0.47); $I^2 = 0\%$				0.005 0.1 1 10 200
Test for overall effect	Z = 8.63 (P < 0.00	0001)					Shared decision making Usual care

Strategies for Reducing Antibiotic Prescribing in Community Settings

- Shared decision-making during office visits
 - Safety netting significantly reduce the rate of antibiotic prescribing in children
 - A cluster randomized controlled trial using an interactive booklet on RTI in children used by clinicians to give parents clear information about symptoms suggestive of severe illness and the action required reduced Abx prescribing from 40.8 to 19.5%
- Delayed prescribing
 - Antibiotic prescription can be collected at the parents' discretion after 72 hours if they feel that their child is not improving
 - Parents are extremely reassured
 - Overall use of antibiotics reduced by 80% in some studies


Strategies for Reducing Antibiotic Prescribing in Community Settings

- Outpatient antibiotic stewardship
 - Real-time prospective audit and feedback very challenging

Strategies for Reducing Antibiotic Prescribing in Community Settings

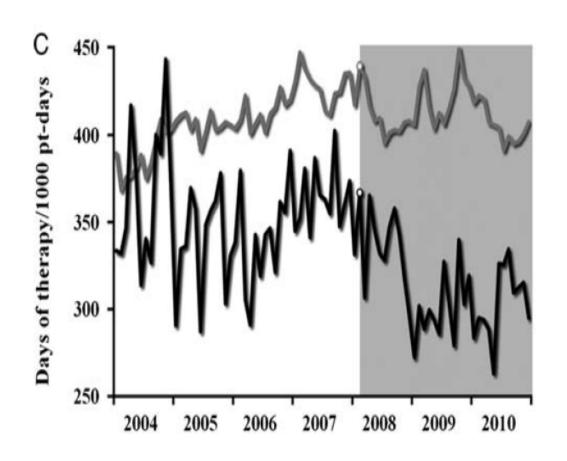
- Outpatient antibiotic stewardship
 - Timely review of microbiology results to decide whether antibiotics need to be continued
 - Implementation of a protocol to routinely follow up pediatric urine culture results within a community based setting → increased discontinuation rate of antibiotics from 4 to 84% and avoiding 40% of antibiotic days prescribed
 - Peer-comparison has significant impact on antimicrobial prescribing rates

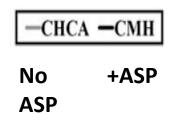
Pediatric AMS in the Inpatient Setting

• Elements of pediatric inpatient AMS include a variable mix of the

following

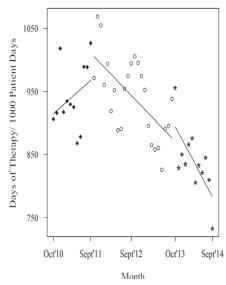
Strategy	Pros	Cons
1- Antibiotic restriction and preauthorization	 Immediate effect on prescribing rate Easy to implement 	 Perception of autonomy loss Potential delays in appropriate antibiotic administration Increase use of other antibiotics Lack of education about AMS principles

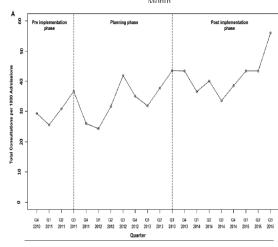

Pediatric AMS in the Inpatient Setting


• Elements of pediatric inpatient AMS include a variable mix of the

following

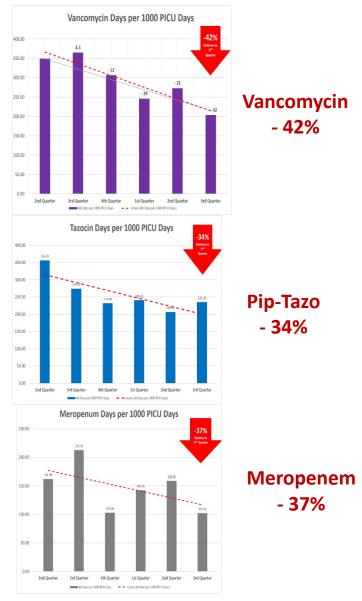
Strategy	Pros	Cons
2- Prospective audit and feedback	 Very effective Improves patient safety Increase ID consultations Safe net for potential medication error or bug-drug mismatch Allows education and facilitate behavior change 	 Labor intensive Personnel dependent Requires training Leadership acceptance Need a reliable system in real-time identification of patients on antibiotics Depends on prescribers to accept the recommendation of the AMS team Documentation


Impact of Prospective Audit and Feedback



Stewardship Rounds – Handshake Rounds

- Children's Hospital Colorado 2013
- Review of all prescribed antimicrobials and perform a rounding-based, in-person approach to feedback by a pharmacist—physician team
- Significant drop in antimicrobial days of therapy
- Significant increase in ID consultation from all studied units
- High acceptance rate up to 86%
- Widely accepted and adopted model in US children's hospitals

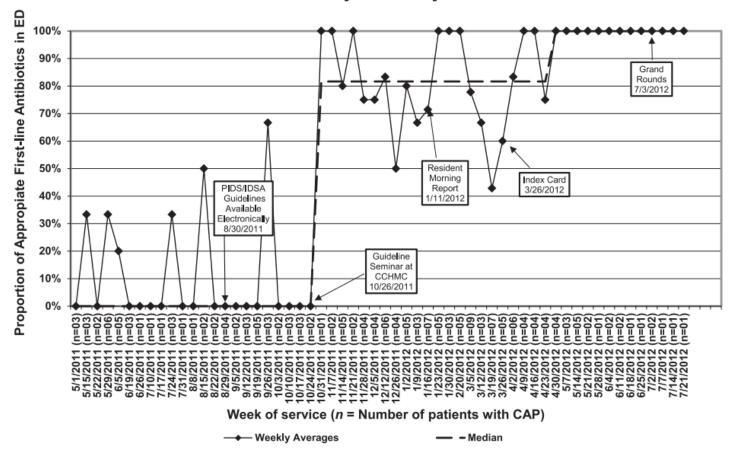


Antimicrobial Stewardship Program in a Pediatric Intensive

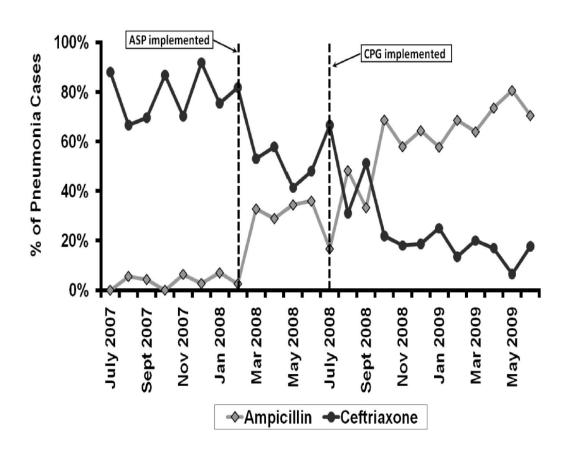
Care Unit of a Tertiary Care Children's Hospital in Saudi Arabia—a Pilot Study

Alawdah et al. Antimicrobial resistance and infection control. 2015 1;4(S1):P173.

Pediatric AMS in the Inpatient Setting


• Elements of pediatric inpatient AMS include a variable mix of the

following


Strategy	Pros	Cons			
3- Implementation of institution-specific guidelines for common syndromes (e.g. CAP or Surgical prophylaxis)	 Effective if widely accessible and associated with monitoring and feedback Utilization of digital apps and decision support software 	 Requires periodic update and education Depends on physician's documentation of indication 			

Example: Guideline Implementation and Adherence Monitoring

First-line Antibiotic Prescribing in the ED May 2011–July 2012

Impact of Guidelines on Practice in One US Hospital

المملكة العربية السعودية وزارة الصحة مدينه الملك فهد الطبية

Guidelines for Empirical Antimicrobial Therapy In Children

CENTRAL NERVOU	CENTRAL NERVOUS SYSTEM									
Indication	Suspected Pathogens	Antimicrobial of Choice	Alternative Therapy/Comments							
Meningitis										
Neonate (up to 4 weeks)	Gr B Streptococcus, Gram negative Enteric Bacilli, Listeria	IV Ampicillin + IV Cefotaxime								
4 weeks - 3 months	Same as Neonates and Older Children	IV Ampicillin + IV Cefotaxime	Add Vancomycin in sick patients							
Older Children	S. pneumoniae, N. meningitidis, H. influenzae	IV Ceftriaxone + IV Vancomycin	Deescalate antibiotic according to sensitivity							
Encephalitis	Herpes Simplex Virus	IV Acyclovir	If meningoencephalitis is suspected, refer to empiric antibiotics for Meningitis. Ensure sending HSV and other viruses PCR from CSF Samples							
V-P Shunt Related Infection	Coagulase-negative Staphylococci, Enteric gram- negative bacihi	IV Vancomycin + IV Ceftazidime	Review previous shunt infection episodes and cover previously isolated pathogens if documented sensitivity is available or consult ID							

SEI	SEPTICEMIA/BACTEREMIA (Excluding Meningitis)									
	Indication	Suspected Pathogens	Antimicrobial of Choice	Alternative Therapy/Comments						
Sep	ticemia or Bacteremia									
	Neonates	Gr B Streptococcus, Gram negative Enteric Bacilli, Listeria, Enterococcus	IV Ampicillin + IV Gentamycin							
	1-3 months	Same as Neonates and Older Children	IV Ampcilin + IV Cefotaxime	Add Vancomycin in severely ill patient						
	> 3 months	S. pneumoniae, Meningococcus, S. aureus, H. influenza, E. coli	IV Ceffriaxone	Add Vancomycin in severely ill patient.						
	> 48 hours of Hospitalization	Hospital acquired Pathogens including P. aeruginosa, klebsiella pneumoniae and E. coli, staph aureus	IV Pipracillin- Tazobactam ± IV Vancomycin	Consider Aminoglycocide in severely ill patient						
	Sickle Cell Disease with sepsis	S. pneumoniae, H. influenzae, Salmonella	IV Ceftriaxone ± IV Vancomycin	β-Lactam Allergy: Clindamycin+Ciprofloxacin						

	Indication	Suspected Pathogens	Antimicrobial of Choice	Alternative Therapy/Comments
Pnet	monia			
1	Neonates	Group B Streptococcus, Gram negative Enteric Bacilli, Listeria	IV Ampicillin + IV Gentamycin	
Com	munity-acquired			
	1-3 months	S. pneumoniae, C. trachomatis, B. pertussis, S. aureus, H. influenzae	IV Cefotaxime ± Macrolides	Obtain a viral NPA especially <2 years and consider Adding Oseltimavir.
- 3	3 months - 12 years			-
	Immunized	Strept. Pneumo, mycoplasma, staph aureus	IV Ampicillin ± Macrolides	IV Augmentin
	Non-immunized	Strept. Pneumo, H. influenza, M.P. S. Aureus,	IV Cefuroxime ± Macrolides	
	Aspiration pneumonia	Anaerobes, enteric gram negative	IV Augmentin	IV Clindamycin
Com	plicated pneumonia			
рпец	ecrotizing pneumonia, para monic effission, empyema, matocele & lung abscess.	S. pneumoniae, S. aureus, H. influenzae, S. pyogenes, C. pneumoniae, M. pneumoniae	IV Ceftriaxone + IV Clindamycin ± Macrolides	
Healt	theare associated Pneumoni	a		
,	Ventilated	Gram negative bacilli including P. aeruginosa anaerobes, staph aureus	IV Pipracilin/Tazobactam ±IV Vancomycin ± IV **Aminoglycocides	Cefepime+Clindamycin. **Add aminoglycocide if patic colonized with MDR organism
1	Non ventilated	Gram neg. bacilli, Staph	IV Pipracilin/Tazobactam	

URINARY SYSTEM			
Indication	Suspected Pathogens	Antimicrobial of Choice	Alternative Therapy/Commen
UTI	E. coli, Proteus spp.	IV Ceftriaxone	Amikacin if ESBL is susp
OTHER SYSTEMS			
Indication		Antimicrobial of	
	Curnacted Dathorans	Allullicrobiator	Alternative
THOICAGOR	Suspected Pathogens	Choice	Alternative Therapy/Comment:
Febrile Neutropenic Child	Suspected Pathogens Gram negative bucilli including P. aeruginosa		

gram-negative bacilli, Plus P.

Aeruginosa and MDR Gram

immmocompromised

B. melitensis B. abortus

Rifampicin + TMP/SMX

Rifampicin+

patient.

Catheter-Related BSI

Brucellosis

< 8 years

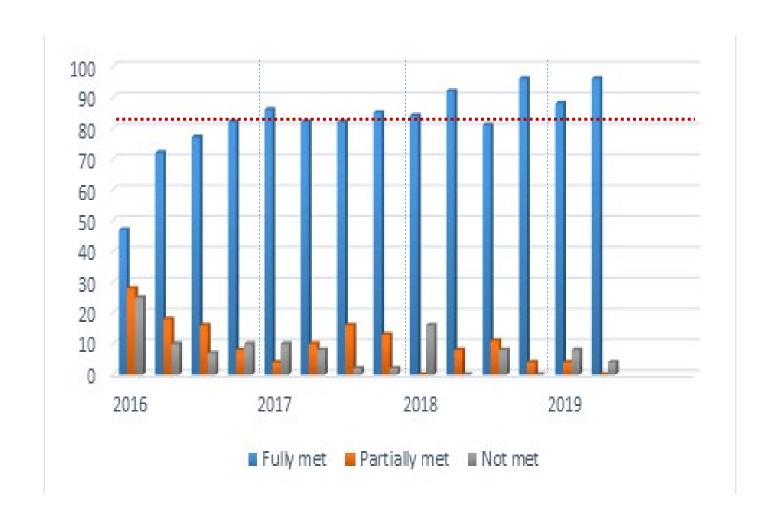
>8 years

IV Cefepime +IV Vancomycin.

immunocompromised patients.

Add IV Gentamycin for

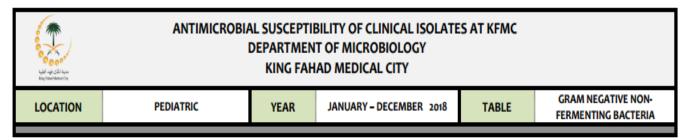
hospitalized patient


Add aminoglycocides in severely ill

Indication	Suspected Pathogens	Antimicrobial of Choice	f Alternative Therapy/Comments		
Cellulitis	S. aureus, Gr A Streptococcus	IV Cloxacillin or Cefazolin	IV Clindamycin		
Necrotizing Fascitis	Gr A streptococcus, S. aureus, Polymicrobial, Clostridium spp.	IV Clindamycin + IV Cloxacillin	Consult ID on all cases Consult Pediatric Surgery		
Periorbital cellulitis	Strept. Pneumo, staph aurues, GAS, H. Influenzae	Cefuroxime or Augmentin	Clindamycin if MRSA is suspected		
Orbital cellulitis	Strept. Pneumo, moraxella, GAS, anaerobes	Clindamycin + Ceftriaxone	IV Vancomycin + Ceftriaxone Metronidazole		

08	OSTEOARTICULAR									
	Indication	Suspected Pathogens	Antimicrobial of Choice	Alternative Therapy/Comments						
	Neonate	Staph aureus, GBS-enteric gram negative bacilli	IV Cefotaxime + IV Vancomycin							
	All other age group	Staph aureus, strep. Pneumo, strep. Pyogenes,	IV Clindamycin	IV Vancomycin **Add ceftriaxone for non- immunized patients.						
	Sickle cell anemia	Strept. Pneumonae salmonella, Staph aureus	Clindamycin + Ceftriaxone							

Indication		Suspected Pathogens	Suspected Pathogens Antimicrobial of Choice			
Er	iterocolitis	·				
	Neonates (NEC)	Enteric gram negative bacilli, Enterococcus spp., anaerobes	IV Ampicillin + IVGentamycin ± Metronidazole			
	C. Difficile- Associated	C. Difficile	Stop offending antibiotic + PO Metronidazole	Alternative therapy: PO Vancomycin		
Pe	ritonitis					
	Primary (spontaneous)	Strept. Pneumo, gram negative bacilli	IV Ceftriaxone			
	Secondary (i.e., post perforation)	Gram negative bacilli, anaerobes	IV Ampicillin + Gentamycin + Metronidazole	Consult ID		

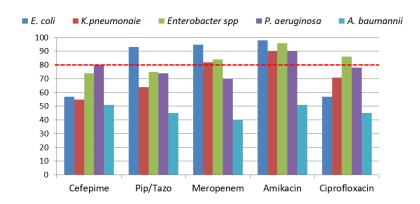

Percentage of Compliance to Empiric Antibiotic Guidelines at CSH-KFMC at Hospital Admission

Surgical Prophylaxis Manual Order Set

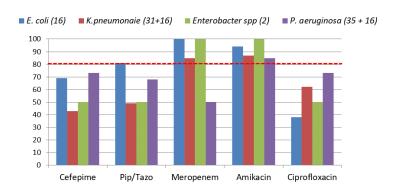
Surgical Antimicrobial Order Sheet (Adult) Patient Label A) Surgical antimicrobial prophylaxis order (Preset 24 hours): Important instructions: Adult dosage and duration "Prophylactic antimicrobials should be given as a single IV dose starting within If Vancomycin or Fluoroquinolone is used, the infusion should be started 60-120 minutes before 60 MINUTES prior to incision and should not exceed 24 hrs post incision in order to minimize the possibility of an infusion reaction. operatively for all types of surgery, regardless of the presence of indivelling Alternative (for severe 8-lactam allergy or catheters, drains or prosthesis. MRSA colonization) "For procedures lasting more than four hours or when excessive blood loss (> 1.5 L) occurs, re-dosing is indicated every one to two half-lives of the drug in Pt. Weight = patients with normal renal function (Celazolin every 4hrs, Vancomyon every If BMI > 35, or weight ≥120 kg, give 3gm If weight ≥ 90 kg, give 1.5 gm of vancomycin 8hrs, Clindamycin every 4hrs, and Metronidazole every 6hrs). of Cefazolin. Cardiac, (including cardiac devices, insertion procedure and Vancomycin 1gm IV over 60 min x 1 dose Cefazolin 2 gm. IV x 1 dose Ventricular Assist Device (VAD). Coronary artery bypass. □ Vancomycin 1.5 gm IV over 60 min x 1 dose. Cefazolin 3 gm. N x 1 dose Esophageal, gastroduodenal High risk only: (Morbid obesity, Clindamycin 900 mg IV over 30 min x 1 dose esophageal obstruction, decreased gastric acidity or gastrointestinal (For &-lactam allergy but not MRSA colonization) Billary tract High risk only: (Age >70 years, acute cholecystitis, nonfunctioning gall bladder, obstructive jaundice or common duct stones). ☐ Bariatric Surgery ☐ Hemia repair (hemioplasty and hemiorrhaphy) Cefazolin 2gm. IV X 1 dose Ciprofloxacin 400mg, IV x 1 dose Gastrointestina □ Colectomy Cefazolin 3 gm. N x 1 dose ☐ Metronidazole 500mg. IV over 30 min x 1 dose □ Appendectomy, non-perforated ☐ Metroridazole 500mg IV X I dose small bowel surgey (e.g Crohn's) Genitourinary High risk: (Urine culture positive or unavailable, Ciprofloxacin 400mg IV x 1 dose preoperative catheter, trans rectal prostatic biopsy, placement of prosthetic material). Cefazolin 2gm. IV X 1 dose Gynecologic and Obstetric Ciprofloxacin 400 mg. IV x 1 dose "IVaginal, abdominal or laparoscopic hysterectomy. Cefazolin 3 gm. IV x 1 dose ☐ Metronidazole 500 mg. IV over 30min.x 1 dose Cesarean section. ☐ Clindamycin 900mg IV x 1dose Gentamicin 5 mg/kg IV x 1 dose THead and Neck Surgery ☐ Cefazolin 2gm. IV X 1 dose Clean with placement of prosthesis (excludes tympanostomy Cefazolin 3 gm. N x 1 dose Clindamycin 900mg IV x 1 dose ☐ Clean-contaminated cancer surgery ☐ Cefazolin 2gm. IV X 1 dose Clean-contaminated procedures with the exception of Cefazolin 3 gm. IV x 1 dose tonsillectomy and functional endoscopic sinus procedures Metronidazole 500mg IV x 1 dose. Ophthalmic Surgery Gentamicin, Moxifloxacin, gramicidin or Cefazolin 100 mg sub conjunctively x 1 dose polymyxin B topically over 2 to 24 hours Orthopedic Surgery □ Neurosurgery Spinal surgery Cefazolin 2gm. IV X 1 dose □ Vancomycin 1 gm. IV over 60 min x 1 dose Thoracic (Non-Cardiac) and Vascular Arterial surgery involving prosthesis, the abdominal aorta, or a grain incision. ☐ Cefazolin 3 gm. fV x 1 dose ☐ Vancomycin 1.5 gm IV over 60 min x 1dose Lower extremity amoutation for ischemia. ☐Plastic surgery Clean with risk factors or clean- contaminated. Physicain Name (stamp)& signature: Date / Time: Witness Nurse: B) Post -Operative Antimicrobial Order:
None Yes , specify indication: Antimicrobial 1: Duration: Antimicrobial 2: Duration: Days Physicain Name (stamp)& signature: Date / Time: Witness Nurse:

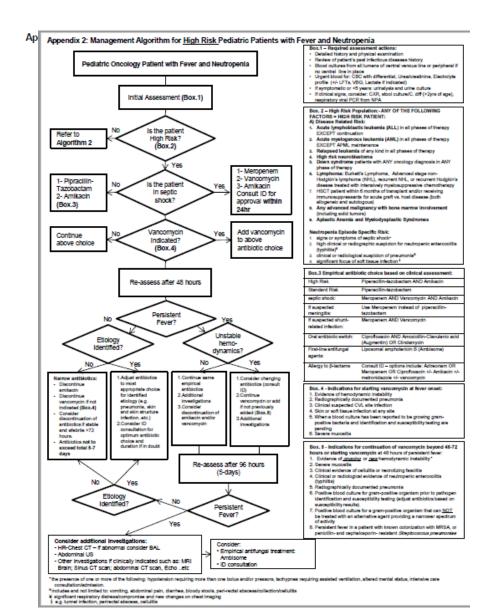
Pediatric-Specific Cumulative Antibiogram

NO ISOLATES NAME	ISOLATE TESTED	CAZ	СРЕ	CIP	TZP	GM	AN	IMP	MER	SXT	CL	LEVO
Pseudomonas aeruginosa	323	85%	80%	78%	74%	83%	90%	64%	70%		100%	74%
Acinetobacter baumannii	67	51%	51%	45%	45%	43%	51%	43%	40%		97%	46%
Stenotrophomonas maltophilia	50	50%								94%		40%

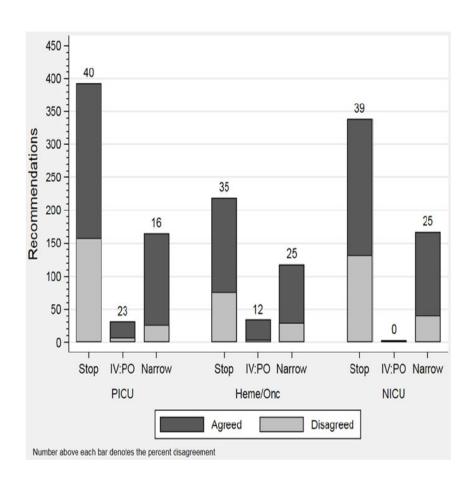

	ABBREVIATIONS FOR ANTIBIOTICS													
AMP	Ampicillin	AUG	Augmentin	CF	Cepl	Cephalothin		Cefuroxime	CAZ	Ceftazidime	FOX	Cefoxitin		
CPE	Cefepime	CIP	Ciprofloxacin	GM	Gen	Gentamicin		Amikacin	SXT	Trimethoprim - Sulfamethoxazole	TZP	Piperacillin - Tazobactam		
IMP	Imipenem	MER	Meropenem	NIT	Nitro	Nitrofurantoin		Nitrofurantoin		Erythromycin	CL	Colistin	SM	Streptomycin
TC	Tetracycline	RA	Rifampin	TGC	Tige	Tigecycline		Levofloxacin	СТХ	Cefotaxime	DOXY	Doxycycline		
	* Tested on urinary tract isolates only													
<= 69 % Caution in selecting this antibiotic is advised, discussion with Microbiologist or ID is recommended.				ed. 70	% - 79 %	recommended for empiric therapy if no other choice			>=80 %	reasonably good susc line empiric therap				

Local Fever & Neutropenia in Children with


Cancer Protocol


Empiric Gram Negative Coverage Choice

2018 CSH Antibiogram for clinically important gram-negative bacteria


2017 + 2018 CSH Pediatric Oncology Antibiogram (manually combined)

Safety of ASP on High Risk Pediatric Patients

- In patients for whom an ASP recommendation was given, the odds of mortality was significantly lower (adjusted odds ratio [aOR], 0.72; 95% CI 0.54–0.96; P = 0.023)
- A stop recommendation was not associated with increased odds of 30-day readmission (aOR, 0.98; 95% CI, 0.82–1.17; P = 0.842)
- The LOS for agreement with ASP recommendations was significantly shorter compared to cases in which disagreement occurred (10.2 days vs 12.5 days; P = 0.021)

Tracking & Reporting

- Collect baseline data
- Process measures
 - Recommendation acceptance rate
 - Dose optimization
 - Route optimization
 - Discontinuation of inappropriate antibiotics
- Outcome measures
 - Total antibiotic expenditures (cost, DOT/1000 patient days)
 - Impact assessment (C. difficile and MDRO rates) will take time
 - 30-day readmission rates on cases that ASP intervened in

AMS Metrics

- Days of Therapy (DOT)/ 1000 patient days (based on the hospital census)
- Antibiotic Use and Resistance (AUR) Module
 - Days of therapy (DOT)/ 1000 days present
 - More nuanced Assessment
 - Allows for benchmarking antibiotic use inter-and intra-facilities
 - National Healthcare Safety Network (NHSN)/CDC require reporting this metric
- Defined Daily Doses (DDD)/ 1000 patient days
- Antibiotic spectrum index
- Other
- DOT/Length of therapy (LOT)
- Time to optimal therapy in invasive infections
- Time of conversion from IV to PO for highly bioavailable antimicrobials

AMS Metrics in Pediatrics

- DDD is not ideal large weight range
- Prescribed daily dose (mg/kg/day/100 bed days)
- Neonatal DDD for 8 most commonly used antimicrobials considering an average body weight of 2 kg – not validated or widely used
- Days of therapy per 100 or 1000 patient-day widely used especially in the US.
- Antibiotic spectrum index
- Other metrics of antimicrobial consumption:
 - Proportion of hospitalized children on antimicrobials
 - Specific cohort (healthcare associated vs. community acquired infections)
 - Specific antimicrobial benchmarking (e.g. piperacillin-tazobactam or meropenem)

Antibiotic Spectrum Index

Antibiotic	AbSI Score
Dicloxacillin Sodium	1
Oxacillin	1
Amoxicillin	2
Ampicillin	2
Cephalexin	2
Erythromycin	2
Erythromycin-Sulfisoxazole	2
Metronidazole	2
Penicillin G Benzathine	2
Penicillin G Sodium	2
Penicillin V Potassium	2
Aztreonam	3
Cefazolin	3
Cefdinir	3
Cefixime	3
Cefpodoxime	3
Rifampin	3
Azithromycin	4
Cefprozil	4
Ceftazidime	4
Cefuroxime	4
Chloramphenicol	4
Clarithromycin	4
Clindamycin	4
Piperacillin	4
Sulfamethoxazole-Trimethoprim	4

Cefotaxime	5
Cefoxitin	5
Ceftriaxone	5
Colistimethate Sodium	5
Daptomycin	5
Doxycycline Hyclate	5
Gentamicin	5
Minocycline HCI	5
Telavancin	5
Tobramycin	5
Vancomycin	5
Amikacin Sulfate	6
Amoxicillin-Pot Clavulanate	6
Ampicillin-Sulbactam	6
Cefepime	6
Linezolid	6
Ticarcillin-Clavulanate	6
Ceftaroline	8
Ciprofloxacin	8
Piperacillin-Tazobactam	8
Ertapenem	9
Levofloxacin	9
Meropenem	10
Moxifloxacin HCI	10
Imipenem-Cilastatin	11
Tigecycline	13

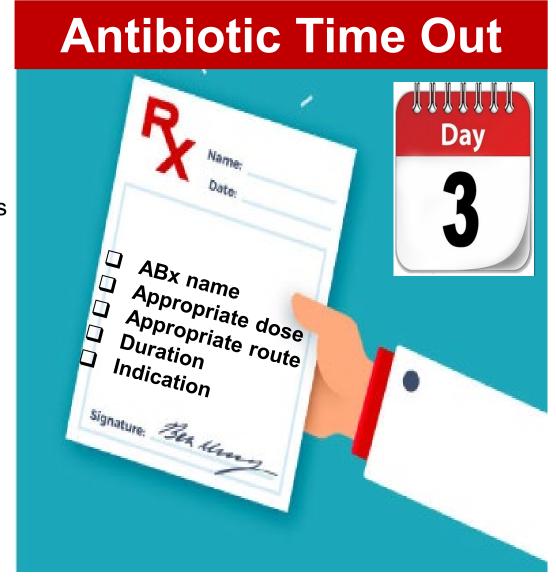
Antimicrobial Quality Metrics for Hospitalized Neonates and Children

- 1. Documentation of the reason for antimicrobial prescribing in the notes
- 2. Targeted therapeutic antibiotic prescribing
- 3. Parenteral administration of antibiotics
- 4. Number of antibiotic combination therapies
- 5. Broad-spectrum antibiotic prescribing
- 6. Antibiotic prevalence rates for hospital-acquired infections
- 7. Targeted broad-spectrum antibiotic prescribing for hospital-acquired infections
- 8. Empirical broad-spectrum antibiotic prescribing for community-acquired infections
- 9. Broad-spectrum antibiotic prescribing for surgical prophylaxis
- 10. Prolonged antibiotic prescribing for surgical prophylaxis

Barriers to Implementing AMS in our Clinical Setting

- Lack of ASP expertise relatively new concept
- Limited pediatric pharmacist time and number
- No protected time for physician ASP activities
- Lack of true accountability/structure for ASP
- Limited IT support
- Incomplete medical records/documentation
- Manual data collection prone to error/human factors

AMS @ CSH in 2020 "Antibiotic Time Out"


Who: Primary team including nurses

When: at 72 hours of antibiotic

initiation

Supported by prospective audit and feedback rounds by ID + clinical pharmacist two days a week on cases non-consulted by ID team

Goals:

- 1. Improve documentation of indication and duration of therapy
- 2. Reduction of aminoglycosides and vancomycin days

Pediatric AMS in Resource Limited Setting

- Assess your local antibiotic use
- Identify the most feasible strategy
- Identify a way to embed AMS in the regular workflow
- Enforce the importance role of accurate diagnostics
- Educate providers
- Obtain leadership buy-in
- Start with simple strategies:
 - Advocating against over the counter antibiotic access
 - Physician and parent education
 - Institution specific guidelines
 - Antibiotic time-out culture (indication and duration documentation)
 - Antibiotic restriction and preauthorization
- Collaborate with microbiology, clinical pharmacy, and infection prevention and control services

Some Advices

- Assess your hospital readiness and gaps
- Build on what you currently have and keep improvement initiatives going
- Have good relationship with everyone especially your ID colleagues
- Start small but aim big
- Talk to related stakeholders/services before implementing any new policy
- Start with antimicrobial restriction and empiric guidelines
- Then focus on appropriateness, de-escalation, and time-outs
- Don't be threatening to teams
- Don't get offended if they did not accept your recommendations
- Measure, measure ALL what you do
 - Be data driven analytics are not the destination but part of the journey
- Education is your role!
- It's a global problem = we ALL need to participate in taking an action Today

lalawdah@kfmc.med.sa